gssMonger
Interoperability Testing Simplified

David L. Christiansen
Windows Core Operating System Division

Security Technology Unit

The Plan

The Basics of Interoperability Testing
Introduction to GssMonger

How GssMonger Aids in Testing
Simplified Demo of the GssMonger suite
Future Plans for the Tool

N 1!
ik

-3 Interop Testing?

Trying one implementation of
something against another
Implementation of the same thing.

Different from Protocol Testing

Interop Testing

Integration Test

“Does my stuff work with
your stuff?”

Requires 2+
Implementations.

Harder to debug
Easy to measure

Important to System
Administrators

Important to Implementers

Protocol Testing

Targeted Test

“Does my stuff look like the
standard?”

Requires only one
Implementation

Viewpoint-Sensitive
Easy(er) to debug

Hard to measure
Important to Implementers

Interop is not Transitive

« A and B can interop
with C, but not each

| other.
b « Testing against the
reference
% implementation is not
9 enough!

Interop is not Reflexive

« Probably obvious, but
it bears repeating.

 |It's an easy (but
bogus) assumption to
make...

— “If | can logon at the
Windows machine,
obviously | could do so
on a unix machine...”

Why Test for Interoperability?

« As with any bug, it is usually much easier,
cheaper, and faster to fix it before release
than afterward.

* Interop bugs tend to block deployments

* Interop bugs affect customers in a
meaningful, tangible way.

“‘What, why doesn’t xlock work with a Microsoft
KDC? Who do I report that bug to?”

-Hypothetical Customer

Challenges of Interop Testing

* Expensive.

— Requires other implementations (and understanding
of them)

« Tedious
— Tests must be run against all important platforms
— Combinatorics are boring
— Test matrix grows exponentially with implementations

« Philosophically and Politically Taxing

— Requires you to define “works” for your
Implementation.

— Resolving bugs sometimes requires negotiation
between implementers.

Windows Domain
KDC running on Windows
Crossrealm Trust

Unix Server

Joined to Windows Domain

Example

MIT Realm

KDC running on Linux

Windows Server

Joined to MIT Realm

Clients

Joined to Windows Domain

Postulate two realms
— An MIT Realm
— A Windows Domain

Each realm has one
server

The Windows domain
has several clients

All in all, a very typical
heterogenous
deployment.

MIT Realm

KDC running on Linux

Windows Domain

KDC running on Windows

A user in the
Windows domain logs -
on to a client machine ‘ A Windows Server

(right)

Clients

Joined to Windows Domain

MIT Realm

KDC running on Linux

Windows Domain

KDC running on Windows

Windows Server ...then authenticates
to a server in the MIT
Clients Realm

Joined to Windows Domain
(left)

Nix Server

Easy, Right?

 Now, imagine that the
server is a web
interface to a Windows Domain M1 Rea'm
d atabase KDC running on Windows

Crossrealm Trust

[t now has to

/ mdows Server

delegate to another Unix Server
Server olnea o Winaows (Eam ~ ication

Clients

Joined to Windows Domain

The Sysadmin’s Burden

« Of course, you have
Windows Domain WL Reatm tO teSt a” your C||ent

KDC running on Linux

KDC running on Windows

architectures too
— since each can have
its own bugs...
 And each server is
also a client.

 You also want to test
with principals in each
realm...

PRI AN Clients
User “s "‘ £ Joined to Windows Domain

. Butif you're Windows Domain emein
Implementing, you N
want all the machines
to interoperate.

— Else, you have bugs
that someone will find...

Crossrealm Trust

Clients

Joined to Windows Domain

, ; MIT Realm
W|nd0WS Domaln KDC running on Linux

KDC running on Windows

Crossrealm Trust

* And don’t forget
delegation...

Clients

Joined to Windows Domain

Too Many Variations!

« | doubt that this level of analysis is being
performed today, at least using the publicly
available suites.

 All 8x4x4=128 variations above would be difficult
to perform with gss-client and gss-server.

— Add in the additional complexity of logging on to four
clients in the unix realm (8x8x4=256 variations)

— Imagine as an implementer testing all 64
combinations of gssapi flags in conjunction with the
above (thousands of variations).

gssMonger to the Rescue!

How does gssMonger Help?

Performs baseline interoperability tests
— Against self (regression)
— Against others (interop)

Automation

— Vastly reduces the tedium of running the same application in so many
modes (kinit, gss-client... repeat, repeat, repeat...

Comprehensive
— Tests lots of different features in various combinations.
Disambiguating:
— No philosophy— measurable interop statistics.
— If gssmonger fails, it will fail for customers too
— It “works” if the test succeeds.
Diagnostics
— Provides surface errors as exposed by the implementation.
— Does not hide errors behind other layers

What does gssMonger do?

» Evaluates interoperability matrix using:
— Context negotiation
— Session protection (wrap, encrypt, sign)
— Password Change
— Password Set
— Delegation

* Provides single interface point (the
master) that can control the entire testbed.

What is gssMonger?

Master/Slave testing framework

Designed to test context negotiation with MIT
Kerberos in the Win2000 timeframe

— The gss-sample apps just weren’t enough.

— Abstraction ported to other platforms (such as
Heimdal) over the years.

Can also perform baseline gssapi regression
(functional) testing

— Has found non-interop errors in various
implementations (MS, MIT, Heimdal).

Extensible to new classes of tests
Source Code Available

Two Primary Components

\
gssMaster gssMaggot .§
lll\\
* Oversees tests * Runs tests by performing
* Does not perform tests tasks as directed by
« Collects diagnostic data Master:
from Maggots. — Authenticate to so-and-so

« Produces human- — Change XYZ’s password

readable output * Knows the underlying
+ Currently runs only on Kerberos implementation
Windows. - Portable

« Talks only to the Master.

A Specific Example

ow gssMonger simplifies testing
in the previously described bed

1. Install gssMaggot everywhere

KDC running on Linux

Windows Domain Wil Fsesim ° Every machine that

you might
authenticate to or
from should run
gssMaggot.

« Tell the maggot
whether the machine
can be a server or
not.

« Maggots require very
little configuration.

Joined to Windows Domain

2. Run gssMaster somewhere

Needs a list of
principals that can be
used in testing

Needs to know where
the maggots are.

gssMaster will then
coordinate testing
using the maggots

All user interaction is
done by the Master.

| gssMaster

Running on a non-
participating computer

3. Analyze Output

Swnaary

)
gsshonger log vl started at 16:38:38 09/01/2005, firashed at 16:3941 09/01/2005. Time elapsed n gssMonger log zml: ane Minte, 3 Seconds.) H O p ef u I I y y O u I I S e e
b)

There were 20 test blocks.

20 (100%4) locks atempted, 20 (100%4) suscessfl 1 O O O/
Breakdovwn by Levels o S u C C e S S .

Level| % MM‘comments . .
Pass’mm@[memptedﬁ cccccc fil L TO a n Ad m I n y th IS

means a correctly

: configured setup.

s * To an Implementer, it
o % means the scenario
mammseoss e can be setup

= interoperably

ME (because you did it).

|0§§00 |Pass
MAGH2 |Pass

FlagCombos | Pass | Foo@DOMSECEMI0S | Pass

=]
o

=]
=]

One Variation

« gssMaster tells a Maggot to authenticate to one
of the server Maggots using a client principal.

« The Master reports that (in this case)
authentication failed.

FlagCombos | foo@DOMSECEMEDY | SECAMED9-99% | SECEHMED?:999 | Ma 0x02 !
! ! | SEC6MED? ;999 | !

| SECEMEDY =999 | ! !

fooGDOMSECEMEDY ! ! ! !

FlagCombos |} ! ! ! !

gssMonger.log.xml started at 16:47:53 09/01/72005, finished at 16:47:57 0%/0172005.
Time elapsed in gssMonger.leg.xml: 3 Seconds.

There were 5 test blocks.
5 (100¥) blocks attempted, none (0¥) successful.

EEENNNENNNEE 1002 (5/5) [Attempted]

Authentication

Server
host/server. mit.test.com
@MIT.TEST.COM

Full Regression Run

Surnmary

geshlonger log sml started at 16:38:38 09/01/2005, finshed at 16:2%:41 090172005, Tine elapzed in geshlonger log zml one Mnute, 2 Seconds.

There were 20 test blocks.
20 (100%) blocks attempted, 20 (100%) successfil

Brealzdown by Levels

|Level | g ||:-::-unt |total ||::omments

Pass 10094 (20 |20 |[[Attempted, Successfil
| Pass [100% 20 20 [Attempted,]

 Just as in the single variation case, gssMaster
produces a report describing what percentage of
pairings actually interoperated.

* Anything listed as a failure (previous slide) is a
scenario that verifiably doesn’t work.

e

G
O
In
J
Fo
rw
a
rd

The Dream...

| had hoped we could
create a standard bed
of machines that we
could test against
over the internet

 This proved Hard.
— Schedules
— Priorities
— Infrastructures
« |t's still the dream ©

Lessons Learned

« One team’s test time is another team’s
crunch time

» Testing multiple prerelease platforms
together is not terribly productive.

Most Importantly:

 No amount of cool test software can
change the need to actually runit.
* One of the reasons interop summits are productive

Future Enhancement

* There are places that gssMonger can't go
right now, but could and should to further
the goal of interoperability in the future.

— PKINIT: in progress, needs community help

— Other protocols (we have NTLM, some
SPNEGO...)

* There are always bugs, of course...
« What would benefit the community?

Call to Action

* Please please please please please
run this tool against your implementation.

— First run it against yourself (regression).

— If your stuff works, run it with other implementations in
the mix (actual interop)

« We do run this test extensively inside Microsoft

— But we can’t keep up on new releases of other
implementations.

— If everyone tests his/her latest bits against the other
major released implementations, the major bugs will
be shaken out.

In Closing

* Interop Testing is important but not easy

» gssMonger can manage and greatly
simplify this arduous task

* |f everyone does a little of it, the job gets
quite a bit easier
— Please run gssmonger.

Questions?

