Unbinding AS-REP from AS-REQ in
PKINIT

L. Cervesato', 4. D. Jaggard', 4. Scedror?, J.-K. Tsaif, and C. Walstad
I'ETF-63
Kerberos WG
1 August 2005

“Tulane University and *University of Pennsylvania

Partially supported by ONR and NSF

Our Work

LI Part of ongoing formal analysis of Kerberos 5 suite

® Previously studied basic and cross-realm authentication

LI Attack on pK-init-26 found when KDC uses public-Key mode
® Breaks binding between AS-REQ and AS-REP
® Prevents full authentication in pK-init-26

L Formal verification of fixes preventing attack

Attack and Fixes (Overview)

L Authentication attack
® KDC believes he is talKing to the attacKer
® (lient believes she is talking to the KDC
® Attacker Knows the Key shared by the client and KDC

L] Possible because the KDC does not sign data identifying the client

® AttacKer constructs AS-REQ based on client’s 4S-REQ,
* KDC signs data from client, sends in AS-REP to attacker
® AttacKer forwards this to client after learning Keys
® Ran Canetti, consulted on details of spec., independently hypothesized the
possibility of an “identity misbinding” attack
L pK-init-27 is intended to defend against this attack
® KDC signs data derived from client’s identity

Consequences of the Attack.

] The attacker knows the keys C uses; she may:

® Impersonate servers (in later rounds) to the client C

® Monitor C’s communications with the end server

L] Other notes

* AttacKer must be a legal user
® Cis authenticated to end server as attacker (not as C)

* DH mode appears to avoid this attack.
— Still need to prove formally security for DH

Formalizing the AS-REQ

LI Our formalization of pa-data includes
® t.=cusec/ctime (in pKAuthenticator)
® n, = nonce (in pkKAuthenticator)
° [t,] = signature (in signerinfos) over t,, n, using C's secret Key
sKC
L Our formalization of req-body includes
® C=cname
® T =sname

® n, = nonce

tC’ 1y [tc’ 1n, sk’ C/ (L n,

Formalizing the AS-REP

[Our formalization of pa-data includes
* Kk =replyKey (in ReplyKeyPack)
* n, = nonce (in ReplyKeyPack), from AS-REQ
[k 1] 4 = signature with K's secret Key sKK
® {...} g is encryption with C's public Key pkC
L C = cname in AS-REP
L] X = ticket in AS-REP
[Our formalization of enc-part includes
* 4K = Key
® n, =nonce
® t, = authtime
® sname =T

® {...} is encryption with the reply Key K.

K, 1, [k, ng/ 5@(}17@/ C X AKX, n, Ly Q7K

The Attack

At time t,, client C requests a ticKet for ticKet server T (using nonces n, and n,):

C tc/ nzl [tcl n’z SK'C/ G Z n] I

The attacKer I intercepts this, puts her name/signature in place of C's:

tC’ My [tc/ 112] skl 1,7, n
<

Kerberos server K replies with credentials for I, including: fresh Keys K and AK; a ticKet-

granting ticket X, and K's signature over K,n,:

(Ignore most of enc-part) I K 11 (K 1) odr D X0 EAKG -y

X

I decrypts, re-encrypts with C's public Key, and replaces her name with C's:

C . { TLZ/ [kl n’z]s@(/pkch/A)C/ I{q% “‘IIK
b TAYEAY

I

°| knows fresh keys k and AK ® Principal ‘P has secret Key sKP, public Key pkP
*C receives Ks signature over K;n, and ® fmsg}.,, is encryption of msg with Key

assumes K, AK; etc., were generated for C ®[msgly,, is signature over msqg with Key

(not 1)

Consequences of the Attack.

] The attacker knows the keys C uses; she may:

® Impersonate servers (in later rounds) to the client C

® Monitor C’s communications with the end server

L] Other notes

* AttacKer must be a legal user
® Cis authenticated to end server as attacker (not as C)

* DH mode appears to avoid this attack.
— Still need to formally prove security for DH

Desired Authentication Property

If a client C processes a message containing KDC-generated

public-Key credentials, then some KAS K produced a set of
such credentials for C.

L1 The attack shows this property does not hold in pK-init-26

LI We believe this property holds if:
* The KAS signs F(C), k, n,
® The AS-REP is as in pK-init-27

Preventing the Attack in General

L] Sign data identifying client
* The KDC signs F(C), K, n,
* Assume F(C)= F(C’)implies C = C’
* 4$-REQ message now formalized as

(K, n, [F(C), k, ng/ S@CIIP@/ C X, (AKX ny ty 77&

L] We have a draft formal proof that this guarantees

authentication

® Does cname/crealm uniquely identify client?

® Added secrecy properties if F(C) identifies pkC?

pK-init-27 and the Attack .

LI In the change implemented in pK-init-27:
® The KDC signs K, cksum (i.e., cKksum in place of n,)

— Kis replyKey
— cKsum is checksum over AS-REQ.
* AS-REP now formalized as

(K, cksum, [K, cksum] ot o C X, {AK, 1,y by Th,

L] We have a formal proof that this guarantees authentication
® Assume checKsum is collision-free
* Assume KDC's signature Keys are secret

® Plan to carry out a more detailed, cryptographic proof in the future

ReplyKeyPack in pK-init-26

ReplyKeyPack ::= SEQUENCE {
replyKey [0] EncryptionKey,
-- Contains the session Key used to encrypt the
-- enc-part field in the 45-REP.
nomnce [1] INTEGER (0..4294967295),
-- Contains the nonce in the PKAuthenticator of the

-- request. ... }

ReplyKeyPack in pK-init-27

ReplyKeyPack ::= SEQUENCE {
replyKey [0] EncryptionKey,
-- Contains the session Key used to encrypt the
- enc-part field in the 4S5-REP.
asCﬁec&sum[I | Checksum,
-- Contains the checksum of the AS-REQ
-- corresponding to the containing AS-REP.
-- The checksum is performed over the type AS-REQ,
-- The protocol Key [RFC3961] of the checKsum is the
-- replyKey and the Key usage number is 6.
-- If the replyKey's enctype is newer’ [RFC4120]
-- [RFC4121], the checKsum is the required
-- checksum operation [RFC3961] for that enctype.
-- The client MUST verify this checKsum upon receipt

-- of the AS-REP. ... }

Future Work

[We will have a technical draft on this in several weeks
® We will post for comments from WG

L Later: A full analysis and verification of PKINIT

* Cryptographic proofs
* We will look at DH mode

[Other parts of Kerberos suite
® Which protocol components might benefit most from formal analysis?

L We will report results of continuing work to WG

L] Thanks to Ran Canetti, Sam Hartman, and Jeffrey Hutzelman for
interesting and fruitful discussions

Bonus Slides

After the AS-REQ/-REP

L1 Both the attacker I and client C Know the Keys K and AK
® (believes the KDC produced K and AKX for C

L] Attacker may monitor communications

® AttacKer must put her name into the 7GS-REQ and AP-REQ
messages to match the ticKets

® Attacker learns Keys in IGS-REP and AP-REP
L1 Attacker may impersonate servers

* Instead of forwarding modified —REQ messages, attacKer may
simply forge —REP messages herself

‘Proof Sketch for General Defense

Ll Assume
® (Client receives AS-REP with [F(C), K, 11,/ ¢
® KAS's signature Key is secret
® Signatures are unforgeable
* F(C) = F(C)implies C=C’
L1 Proof sketch

* Signature in AS-REP must come from the KAS K

* K would only produce this signature in response to an AS-REQ,
containing C’ such that F(C’) = F(C)

® Collision-freeness of F implies that K created the AS-REP for C

‘Proof SKetch for pK-init-27

| Assume
® (Client receives AS-REP as in pK-init-27
® KAS s signature Key 1s secret
® Signatures are unforgeable

® Checksums are collision-free

LI Proof sketch

* Signature in AS-REP must come from the KAS K

* K would only produce this signature in response to an AS-REQ,
whose checKsum is the signed value

® Collision-freeness of checksums implies that the AS-REQ was as
claimed (including C's name)

The Attack (with Certificates)

At time t,, client C requests a ticKet for ticKet server T (using nonces n, and n,):

t., n, Cert, [t,n,[., Trust, C,'T, n,

> [

The attacKer I intercepts this, puts her name/signature in place of C's:

Kerberos server K replies with credentials for I, including: fresh Keys K and AK; a ticKet-
granting ticket X, and K's signature over K,n,:

(Ignore most of enc-part) i {k, n, Cert,y [K, nZJSK‘K/IpKI/ LX A%, ...}

A

I decrypts, re-encrypts with C's public Key, and replaces her name with C's:

C . {k, n,, Cert,, [K, nZ]SKK}PkC’lA?ff" AKX, ...}

I

°| knows fresh keys k and AK ® Principal ‘P has secret Key sKP, public Key pkP
*C receives Ks signature over K;n, and ® fmsg}.,, is encryption of msg with Key

assumes K, AK; etc., were generated for C ®[msgly,, is signature over msqg with Key

(not 1)

What If skC is Lost?

L Assume client C loses her decryption Key
® (Cgenerates new skC/pkC pair
® KDC K has not yet learned of this update
® Cuses a different Key for signatures than for decryption

L1 Even after fixes described to prevent attack:
® Attacker may intercept AS-REP (Knowing sk(Clost)
® AttacKer re-encrypts using C's new public Key pKCnew
® (Cis unable to detect tampering
® Authentication holds, secrecy does not
LI Possible fix: sign pKC (or fingerprint?)
® Loss of pKk(is separate problem (and maybe not of concern), but might be
addressable when fixing the binding problem

A Secrecy Question

At time t,, client C requests a ticKet for ticKet server T (using nonces n, and n,),

signing this with her signature Key:

C tC’ n2/ [tC’ 712 skCsign’ C/ (I; nl

Kerberos server K replies with credentials for C, including: fresh Keys K and AK; a ticKet-
granting ticket X, and K's signature over K,cKsum (per pK-init-27). ‘The encryption is with C's
compromised public Key:

(Ignore most of enc-part) i (K, cksum, [K, cKsum] ud s C X0 (AKG - e

- X
I decrypts, re-encrypts with C's new public Key, forwards the result to C:
(K st [, RS g € X (G -

AN

I

°/ knows fresh keys k and AK *C uses sKCsign for signatures

*C Knows that K generated K and AK for [ASEN/MRCREey 2Ty Xy Uty RN
C, but does not kKnow that I also Knows ®[msg] oy 1S Signature over msy with Key
these

